Q 22. A 100 W bulb B_1 and two 60 W bulbs B_2 and B_3 , are connected to a 250 V source, as shown in the figure. Now W_1 , W_2 and W_3 are the output powers of the bulb B_1 , B_2 and B_3 respectively. Then, (2002) (A) $$W_1 > W_2 = W_3$$ (B) $W_1 > W_2 > W_3$ (C) $W_1 < W_2 = W_3$ (D) $W_1 < W_2 < W_3$ Sol. Let the given power ratings be defined at an operating voltage V. The resistances of the three bulbs are given by $$R_1 = V^2/100$$, $R_2 = V^2/60$, $R_3 = V^2/60$. In the given configuration, the current through B_1 and B_2 is $$i = \frac{250}{R_1 + R_2} = \frac{250}{V^2} \left(\frac{100 \times 60}{100 + 60} \right) = \frac{250}{V^2} \left(\frac{75}{2} \right).$$ Substitute the values of i, R_1 , and R_2 to get the output powers $$W_1 = i^2 R_1 \approx 14 (250/V)^2$$, $W_2 = i^2 R_2 \approx 23 (250/V)^2$, and $$W_3 = (250)^2 / R_3 = 60 (250/V)^2$$. It is interesting to note that B_1 (100 W) is dimmer than B_2 (60 W) which in turn is dimmer than B_3 (60 W).